Workflows
What is a Workflow?Filters
Calculates the Fibonacci series up to a specified length.
Type: COMPSs
Creator: Uploading this Workflow under the guidance of Raül Sirvent.
Submitter: Ashish Bhawel
Name: Matmul GPU Case 1 Cache-ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
Matmul running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000) B: shape (56_900_000, 10) block_size (11_380_000, 10) C: shape (320, 10) block_size ...
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: Matmul GPU Case 1 Cache-OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs 3.3 Machine: Minotauro-MN4
Matmul running on the GPU without Cache. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000) B: shape (56_900_000, 10) block_size (11_380_000, 10) C: shape (320, 10) block_size (10, 10) Total dataset size 291 ...
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: K-Means GPU Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
K-Means running on GPUs. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9
Average task execution time: 194 seconds
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: K-Means GPU Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
K-Means running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9
Average task execution time: 16 seconds
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: Dislib Distributed Training - Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
PyTorch distributed training of CNN on GPU and leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101
Average task execution time: 36 seconds
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: Dislib Distributed Training - Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
PyTorch distributed training of CNN on GPU. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101
Average task execution time: 84 seconds
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Lysozyme in water full COMPSs application run at MareNostrum IV, using full dataset with two workers
PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Kos-Bodrum 2017 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.
Type: COMPSs
Creators: Louise Cordrie, Jorge Ejarque, Carlos Sánchez Linares, Jacopo Selva, Jorge Macías, Steven J. Gibbons, Fabrizio Bernardi, Roberto Tonini, Rosa M. Badia, Sonia Scardigno, Stefano Lorito, Finn Løvholt, Fabrizio Romano, Manuela Volpe, Alessandro D'Anca, Marc de la Asunción, Manuel J. Castro
Submitter: Jorge Ejarque
PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Boumerdes-2003 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.
Type: COMPSs
Creators: Louise Cordrie, Jorge Ejarque, Carlos Sánchez Linares, Jacopo Selva, Jorge Macías, Steven J. Gibbons, Fabrizio Bernardi, Roberto Tonini, Rosa M. Badia, Sonia Scardigno, Stefano Lorito, Finn Løvholt, Fabrizio Romano, Manuela Volpe, Alessandro D'Anca, Marc de la Asunción, Manuel J. Castro
Submitter: Jorge Ejarque