PyCOMPSs DT-LAVA-WF (Lava flow digital twin component DTCV3) run in linux, local laptop experiment test
Type: COMPSs
Creators: Louise Cordrie, Giovanni Macedonio, Antonio Costa, Roberto Spina, Francesco Zuccarello, Gaetana Ganci, Annalisa Cappello
Submitter: Louise Cordrie
Name: Dislib Distributed Training - Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4
PyTorch distributed training of CNN on GPU. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101
Average task execution time: 84 seconds
Type: COMPSs
Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)
Submitter: Cristian Tatu
Name: TruncatedSVD (Randomized SVD) Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: MareNostrum5
TruncatedSVD (Randomized SVD) for computing just 456 singular values out of a (4.5M x 850) size matrix. The input matrix represents a CFD transient simulation of air moving past a cylinder. This application used dislib-0.9.0
A demonstration workflow for Reduced Order Modeling (ROM) within the eFlows4HPC project, implemented using Kratos Multiphysics, EZyRB, COMPSs, and dislib.
Type: COMPSs
Creators: Jose Raul Bravo Martinez, Sebastian Ares de Parga Regalado, Riccardo Rossi Bernecoli, Jorge Ejarque
Submitter: Raül Sirvent
PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Boumerdes-2003 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.
Type: COMPSs
Creators: Louise Cordrie, Jorge Ejarque, Carlos Sánchez Linares, Jacopo Selva, Jorge Macías, Steven J. Gibbons, Fabrizio Bernardi, Roberto Tonini, Rosa M. Badia, Sonia Scardigno, Stefano Lorito, Finn Løvholt, Fabrizio Romano, Manuela Volpe, Alessandro D'Anca, Marc de la Asunción, Manuel J. Castro
Submitter: Jorge Ejarque
PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Kos-Bodrum 2017 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.
Type: COMPSs
Creators: Louise Cordrie, Jorge Ejarque, Carlos Sánchez Linares, Jacopo Selva, Jorge Macías, Steven J. Gibbons, Fabrizio Bernardi, Roberto Tonini, Rosa M. Badia, Sonia Scardigno, Stefano Lorito, Finn Løvholt, Fabrizio Romano, Manuela Volpe, Alessandro D'Anca, Marc de la Asunción, Manuel J. Castro
Submitter: Jorge Ejarque