Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

Provenance registration is becoming more and more important, as we increase the size and number of experiments performed using computers. In particular, when provenance is recorded in HPC environments, it must be efficient and scalable. In this paper, we propose a provenance registration method for scientific workflows, efficient enough to run in supercomputers (thus, it could run in other environments with more relaxed restrictions, such as distributed ones). It also must be scalable in order to deal with large workflows, that are more typically used in HPC. We also target transparency for the user, shielding them from having to specify how provenance must be recorded. We implement our design using the COMPSs programming model as a Workflow Management System (WfMS) and use RO-Crate as a well-established specification to record and publish provenance. Experiments are provided, demonstrating the run time efficiency and scalability of our solution.

Authors: Raul Sirvent, Javier Conejero, Francesc Lordan, Jorge Ejarque, Laura Rodriguez-Navas, Jose M. Fernandez, Salvador Capella-Gutierrez, Rosa M. Badia

Date Published: 1st Nov 2022

Publication Type: Proceedings

Abstract (Expand)

Description This EuroScienceGateway report gives an overview of FAIR Digital Objects (FDO), considering their use for computational workflows as scholarly objects. EuroScienceGateway has progressed thed the technologies Signposting and RO-Crate for implementing Workflow FDOs with the registry WorkflowHub and the workflow system Galaxy, and initiated work with academic publishers to encourage workflow citation practices. Here we document how WorkflowHub supports research software best practices for workflows, and assist building FAIR Computational Workflows. Provenance of workflow executions has been made possible in an interoperable way across many workflow systems using Workflow Run Crate profiles, including from Galaxy. Finally this report explores how Workflow FDOs are exposed and can be utilised, e.g. gathered in knowledge graphs and having tighter workflow system integration.

Authors: Stian Soiland-Reyes, Eli Chadwick, Finn Bacall, Jose M. Fernandez, Björn Grüning, Hakan Bayındır

Date Published: 28th Aug 2024

Publication Type: Tech report

Abstract (Expand)

Recording the provenance of scientific computation results is key to the support of traceability, reproducibility and quality assessment of data products. Several data models have been explored to address this need, providing representations of workflow plans and their executions as well as means of packaging the resulting information for archiving and sharing. However, existing approaches tend to lack interoperable adoption across workflow management systems. In this work we present Workflow Run RO-Crate, an extension of RO-Crate (Research Object Crate) and Schema.org to capture the provenance of the execution of computational workflows at different levels of granularity and bundle together all their associated objects (inputs, outputs, code, etc.). The model is supported by a diverse, open community that runs regular meetings, discussing development, maintenance and adoption aspects. Workflow Run RO-Crate is already implemented by several workflow management systems, allowing interoperable comparisons between workflow runs from heterogeneous systems. We describe the model, its alignment to standards such as W3C PROV, and its implementation in six workflow systems. Finally, we illustrate the application of Workflow Run RO-Crate in two use cases of machine learning in the digital image analysis domain.

Authors: Simone Leo, Michael R. Crusoe, Laura Rodríguez-Navas, Raül Sirvent, Alexander Kanitz, Paul De Geest, Rudolf Wittner, Luca Pireddu, Daniel Garijo, José M. Fernández, Iacopo Colonnelli, Matej Gallo, Tazro Ohta, Hirotaka Suetake, Salvador Capella-Gutierrez, Renske de Wit, Bruno P. Kinoshita, Stian Soiland-Reyes

Date Published: 10th Sep 2024

Publication Type: Journal

Abstract (Expand)

The rising popularity of computational workflows is driven by the need for repetitive and scalable data processing, sharing of processing know-how, and transparent methods. As both combined records of analysis and descriptions of processing steps, workflows should be reproducible, reusable, adaptable, and available. Workflow sharing presents opportunities to reduce unnecessary reinvention, promote reuse, increase access to best practice analyses for non-experts, and increase productivity. In reality, workflows are scattered and difficult to find, in part due to the diversity of available workflow engines and ecosystems, and because workflow sharing is not yet part of research practice. WorkflowHub provides a unified registry for all computational workflows that links to community repositories, and supports both the workflow lifecycle and making workflows findable, accessible, interoperable, and reusable (FAIR). By interoperating with diverse platforms, services, and external registries, WorkflowHub adds value by supporting workflow sharing, explicitly assigning credit, enhancing FAIRness, and promoting workflows as scholarly artefacts. The registry has a global reach, with hundreds of research organisations involved, and more than 800 workflows registered.

Authors: Ove Johan Ragnar Gustafsson, Sean R. Wilkinson, Finn Bacall, Stian Soiland-Reyes, Simone Leo, Luca Pireddu, Stuart Owen, Nick Juty, José M. Fernández, Tom Brown, Hervé Ménager, Björn Grüning, Salvador Capella-Gutierrez, Frederik Coppens, Carole Goble

Date Published: 1st Dec 2025

Publication Type: Journal

Powered by
(v.1.17.0-main)
Copyright © 2008 - 2025 The University of Manchester and HITS gGmbH