Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Preprint: https://arxiv.org/abs/2110.02168 The landscape of workflow systems for scientific applications is notoriously convoluted with hundreds of seemingly equivalent workflow systems, many isolatedd research claims, and a steep learning curve. To address some of these challenges and lay the groundwork for transforming workflows research and development, the WorkflowsRI and ExaWorks projects partnered to bring the international workflows community together. This paper reports on discussions and findings from two virtual "Workflows Community Summits" (January and April, 2021). The overarching goals of these workshops were to develop a view of the state of the art, identify crucial research challenges in the workflows community, articulate a vision for potential community efforts, and discuss technical approaches for realizing this vision. To this end, participants identified six broad themes: FAIR computational workflows; AI workflows; exascale challenges; APIs, interoperability, reuse, and standards; training and education; and building a workflows community. We summarize discussions and recommendations for each of these themes.

Authors: Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas, Rosa M Badia, Bartosz Balis, Taina Coleman, Frederik Coppens, Frank Di Natale, Bjoern Enders, Thomas Fahringer, Rosa Filgueira, Grigori Fursin, Daniel Garijo, Carole Goble, Dorran Howell, Shantenu Jha, Daniel S. Katz, Daniel Laney, Ulf Leser, Maciej Malawski, Kshitij Mehta, Loic Pottier, Jonathan Ozik, J. Luc Peterson, Lavanya Ramakrishnan, Stian Soiland-Reyes, Douglas Thain, Matthew Wolf

Date Published: 1st Nov 2021

Publication Type: Journal

Abstract (Expand)

Workflows have become a core part of computational scientific analysis in recent years. Automated computational workflows multiply the power of researchers, potentially turning “hand-cranked” datadata processing by informaticians into robust factories for complex research output. However, in order for a piece of software to be usable as a workflow-ready tool, it may require alteration from its likely origin as a standalone tool. Research software is often created in response to the need to answer a research question with the minimum expenditure of time and money in resource-constrained projects. The level of quality might range from “it works on my computer” to mature and robust projects with support across multiple operating systems. Despite significant increase in uptake of workflow tools, there is little specific guidance for writing software intended to slot in as a tool within a workflow; or on converting an existing standalone research-quality software tool into a reusable, composable, well-behaved citizen within a larger workflow. In this paper we present 10 simple rules for how a software tool can be prepared for workflow use.

Authors: Paul Brack, Peter Crowther, Stian Soiland-Reyes, Stuart Owen, Douglas Lowe, Alan R. Williams, Quentin Groom, Mathias Dillen, Frederik Coppens, Björn Grüning, Ignacio Eguinoa, Philip Ewels, Carole Goble

Date Published: 24th Mar 2022

Publication Type: Journal

Powered by
(v.1.16.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH