Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Workflows have become a core part of computational scientific analysis in recent years. Automated computational workflows multiply the power of researchers, potentially turning “hand-cranked” datadata processing by informaticians into robust factories for complex research output. However, in order for a piece of software to be usable as a workflow-ready tool, it may require alteration from its likely origin as a standalone tool. Research software is often created in response to the need to answer a research question with the minimum expenditure of time and money in resource-constrained projects. The level of quality might range from “it works on my computer” to mature and robust projects with support across multiple operating systems. Despite significant increase in uptake of workflow tools, there is little specific guidance for writing software intended to slot in as a tool within a workflow; or on converting an existing standalone research-quality software tool into a reusable, composable, well-behaved citizen within a larger workflow. In this paper we present 10 simple rules for how a software tool can be prepared for workflow use.

Authors: Paul Brack, Peter Crowther, Stian Soiland-Reyes, Stuart Owen, Douglas Lowe, Alan R. Williams, Quentin Groom, Mathias Dillen, Frederik Coppens, Björn Grüning, Ignacio Eguinoa, Philip Ewels, Carole Goble

Date Published: 24th Mar 2022

Publication Type: Journal

Abstract (Expand)

A key limiting factor in organising and using information from physical specimens curated in natural science collections is making that information computable, with institutional digitization tending to focus more on imaging the specimens themselves than on efficiently capturing computable data about them. Label data are traditionally manually transcribed today with high cost and low throughput, rendering such a task constrained for many collection-holding institutions at current funding levels. We show how computer vision, optical character recognition, handwriting recognition, named entity recognition and language translation technologies can be implemented into canonical workflow component libraries with findable, accessible, interoperable, and reusable (FAIR) characteristics. These libraries are being developed in a cloud- based workflow platform—the ‘Specimen Data Refinery’ (SDR)—founded on Galaxy workflow engine, Common Workflow Language, Research Object Crates (RO-Crate) and WorkflowHub technologies. The SDR can be applied to specimens’ labels and other artefacts, offering the prospect of greatly accelerated and more accurate data capture in computable form. Two kinds of FAIR Digital Objects (FDO) are created by packaging outputs of SDR workflows and workflow components as digital objects with metadata, a persistent identifier, and a specific type definition. The first kind of FDO are computable Digital Specimen (DS) objects that can be consumed/produced by workflows, and other applications. A single DS is the input data structure submitted to a workflow that is modified by each workflow component in turn to produce a refined DS at the end. The Specimen Data Refinery provides a library of such components that can be used individually, or in series. To cofunction, each library component describes the fields it requires from the DS and the fields it will in turn populate or enrich. The second kind of FDO, RO-Crates gather and archive the diverse set of digital and real-world resources, configurations, and actions (the provenance) contributing to a unit of research work, allowing that work to be faithfully recorded and reproduced. Here we describe the Specimen Data Refinery with its motivating requirements, focusing on what is essential in the creation of canonical workflow component libraries and its conformance with the requirements of an emerging FDO Core Specification being developed by the FDO Forum.

Authors: Alex Hardisty, Paul Brack, Carole Goble, Laurence Livermore, Ben Scott, Quentin Groom, Stuart Owen, Stian Soiland-Reyes

Date Published: 7th Mar 2022

Publication Type: Journal

Powered by
(v.1.16.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH