SEEK ID: https://workflowhub.eu/people/591
Location: Spain
ORCID: Not specified
Joined: 26th Oct 2023
Expertise: Not specified
Tools: Not specified
Related items
With present computational capabilities and data volumes entering the Exascale Era, digital twins of the Earth system will be able to mimic the different system components (atmosphere, ocean, land, lithosphere) with unrivaled precision, providing analyses, forecasts, and what if scenarios for natural hazards and resources from their genesis phases and across their temporal and spatial scales. DT-GEO aims at developing a prototype for a digital twin on geophysical extremes including earthquakes, ...
Teams: WP5 - Volcanoes, WP6 - Tsunamis, WP7 - Earthquakes, WP8 - Anthropogenic geophysical extremes
Web page: https://dtgeo.eu/
eFlows4HPC project aims at providing workflow software stack and an additional set of services to enable the integration of HPC simulations and modelling with big data analytics and machine learning in scientific and industrial applications. The project is also developing the HPC Workflows as a Service (HPCWaaS) methodology that aims at providing tools to simplify the development, deployment, execution and reuse of workflows. The project demonstrates its advances through three application Pillars ...
Teams: Cluster Emergent del Cervell Humà, Workflows and Distributed Computing, Pillar I: Manufacturing, Pillar II: Climate, Pillar III: Urgent computing for natural hazards, eFlows4HPC general, COMPSs Tutorials
Web page: https://eflows4hpc.eu
Team created to publish applications during COMPSs Tutorials, and share them among participants.
Space: eFlows4HPC
Public web page: https://www.bsc.es/education/training/bsc-training/bsc-training-course-programming-distributed-computing-platforms-compss/
Organisms: Not specified
Distributed computing aims to offer tools and mechanisms that enable the sharing, selection, and aggregation of a wide variety of geographically distributed computational resources in a transparent way. The research done in this team is based on the past expertise of the group, and on extending it towards the aspects of distributed computing that can benefit from this expertise. The team at BSC has a strong focus on programming models and resource management and scheduling in distributed computing ...
Space: eFlows4HPC
Public web page: https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing
Organisms: Not specified
Develop and implement 4 DTCs for volcano-related extremes: volcanic unrest (DTC-V1), forecast of volcanic ash clouds and fallout (DTC-V2), lava flows (DTC-V3), and volcanic gases (DTC-V4).
Test the 4 DTC-V through demonstrators at 3 relevant European sites: Mt. Etna in Italy (SD1), and Grímsvötn and Fagradalsfjall in Iceland (SD2 and SD3 respectively).
Space: A Digital Twin for GEOphysical extremes (DT-GEO)
Public web page: https://dtgeo.eu/
Organisms: Not specified
Develop and implement 1 DTC for data-informed Probabilistic Tsunami Forecasting (PTF) (DTC-T1)
Test the DTC-T1 through demonstrators at 4 relevant sites: Mediterranean sea coast (SD4), Eastern Sicily (SD5), Chilean cost (SD6), and Eastern Honshu coast in Japan (SD7).
Space: A Digital Twin for GEOphysical extremes (DT-GEO)
Public web page: https://dtgeo.eu/
Organisms: Not specified
Provide an integrated, comprehensive, modular modelling and testing framework
Develop multi-scale workflows applicable beyond the identified test-areas enabling improved physical understanding and progress beyond state-of-the-art in the earthquake process.
Develop and implement 6 DTCs covering earthquake-related aspects over long and short time scales
Test the 6 DTC-E at 4 relevant sites: Euro-Med (SD8), Central Apennines and Alto-Tiberina (SD9), Bedretto Lab (SD10) and the Alps (SD11).
Space: A Digital Twin for GEOphysical extremes (DT-GEO)
Public web page: https://dtgeo.eu/
Organisms: Not specified
Develop and implement 1 DTC for Anthropogenic Geophysical Extreme Forecasting (AGEF) with 4 workflow outcomes: forecasting of long-range responses of georeservoirs (TC-AGEF1), forecasting of late responses of georeservoirs (TC-AGEF2), modelling of the largest magnitude (TC-AGEF3), and induced seismic hazard map estimation (TC-AGEF4).
Test the DTC-A through demonstrators at 2 relevant European sites: Strasbourg geothermal site in France (SD12) and KGHM copper ore mine in Poland (SD13).
Space: A Digital Twin for GEOphysical extremes (DT-GEO)
Public web page: https://dtgeo.eu/
Organisms: Not specified