SEEK ID: https://workflowhub.eu/people/122
Location: Australia
ORCID: https://orcid.org/0000-0003-2488-953X
Joined: 30th Apr 2021
Expertise: Not specified
Tools: Not specified
Related items
The Australian BioCommons enhances digital life science research through world class collaborative distributed infrastructure. It aims to ensure that Australian life science research remains globally competitive, through sustained strategic leadership, research community engagement, digital service provision, training and support.
Teams: Australian BioCommons, QCIF Bioinformatics, Pawsey Supercomputing Research Centre, Sydney Informatics Hub, Janis, Melbourne Data Analytics Platform (MDAP), Galaxy Australia, National Computational Infrastructure (NCI) WorkflowHub team
Web page: https://www.biocommons.org.au/
The Sydney Informatics Hub is a Core Research Facility of The University of Sydney. We work towards enabling excellence in data and compute intensive research. We provide support, training, and expertise in statistics, data science, artificial intelligence, bioinformatics, software engineering, simulation, visualisation, and research computing. We are creating reusable workflows for bioinformatics on Australia's national supercompute resources & commercial cloud, as an official node of the ...
Space: Australian BioCommons
Public web page: https://www.sydney.edu.au/sydney-informatics-hub
Organisms: Not specified
Fastq-to-BAM @ NCI-Gadi is a genome alignment workflow that takes raw FASTQ files, aligns them to a reference genome and outputs analysis ready BAM files. This workflow is designed for the National Computational Infrastructure's (NCI) Gadi supercompter, leveraging multiple nodes on NCI Gadi to run all stages of the workflow in parallel, either massively parallel using the scatter-gather approach or parallel by sample. It consists of a number of stages and follows the BROAD Institute's best practice ...
Type: Shell Script
Creators: Cali Willet, Tracy Chew, Georgina Samaha, Rosemarie Sadsad, Andrey Bliznyuk, Ben Menadue, Rika Kobayashi, Matthew Downton, Yue Sun
Submitter: Georgina Samaha
RNASeq-DE @ NCI-Gadi processes RNA sequencing data (single, paired and/or multiplexed) for differential expression (raw FASTQ to counts). This pipeline consists of multiple stages and is designed for the National Computational Infrastructure's (NCI) Gadi supercompter, leveraging multiple nodes to run each stage in parallel.
Infrastructure_deployment_metadata: Gadi (NCI)
Shotgun Metagenomics Analysis
Analysis of metagenomic shotgun sequences including assembly, speciation, ARG discovery and more
Description
The input for this analysis is paired end next generation sequencing data from metagenomic samples. The workflow is designed to be modular, so that individual modules can be run depending on the nature of the metagenomics project at hand. More modules will be added as we develop them - this repo is a work in progress!
These scripts have been written ...
Type: Shell Script
Creators: Cali Willet, Rosemarie Sadsad, Tracy Chew, Smitha Sukumar, Elena Martinez, Christina Adler, Henry Lydecker, Fang Wang
Submitter: Tracy Chew
Germline-ShortV @ NCI-Gadi is an implementation of the BROAD Institute's best practice workflow for germline short variant discovery. This implementation is optimised for the National Compute Infrastucture's Gadi HPC, utilising scatter-gather parallelism to enable use of multiple nodes with high CPU or memory efficiency. This workflow requires sample BAM files, which can be generated using the Fastq-to-bam @ NCI-Gadi pipeline. Germline-ShortV can be applied ...
Type: Shell Script
Creators: Rosemarie Sadsad, Georgina Samaha, Tracy Chew, Cali Willet
Submitter: Tracy Chew
Somatic-ShortV @ NCI-Gadi is a variant calling pipeline that calls somatic short variants (SNPs and indels) from tumour and matched normal BAM files following GATK's Best Practice Workflow. This workflow is designed for the National Computational Infrastructure's (NCI) Gadi supercompter, leveraging multiple nodes on NCI Gadi to run all stages of the workflow in parallel. ...
Flashlite-Trinity contains two workflows that run Trinity on the University of Queensland's HPC, Flashlite. Trinity performs de novo transcriptome assembly of RNA-seq data by combining three independent software modules Inchworm, Chrysalis and Butterfly to process RNA-seq reads. The algorithm can detect isoforms, handle paired-end reads, multiple insert sizes and strandedness. Users can run Flashlite-Trinity on single samples, or smaller samples requiring <500Gb ...
Type: Shell Script
Creators: Tracy Chew, Rosemarie Sadsad, Georgina Samaha, Cali Willet
Submitter: Tracy Chew
Flashlite-Juicer is a PBS implementation of Juicer for University of Queensland's Flashlite HPC.
Infrastructure_deployment_metadata: FlashLite (QRISCloud)
Type: Shell Script
Creators: Tracy Chew, Rosemarie Sadsad, Nathaniel Butterworth
Submitter: Tracy Chew
Bootstrapping-for-BQSR @ NCI-Gadi is a pipeline for bootstrapping a variant resource to enable GATK base quality score recalibration (BQSR) for non-model organisms that lack a publicly available variant resource. This implementation is optimised for the National Compute Infrastucture's Gadi HPC. Multiple rounds of bootstrapping can be performed. Users can use Fastq-to-bam @ NCI-Gadi and Germline-ShortV @ NCI-Gadi to ...
Description: Trinity @ NCI-Gadi contains a staged Trinity workflow that can be run on the National Computational Infrastructure’s (NCI) Gadi supercomputer. Trinity performs de novo transcriptome assembly of RNA-seq data by combining three independent software modules Inchworm, Chrysalis and Butterfly to process RNA-seq reads. The algorithm can detect isoforms, handle paired-end reads, multiple insert sizes and strandedness. ...
Type: Shell Script
Creators: Georgina Samaha, Rosemarie Sadsad, Tracy Chew, Matthew Downton, Andrey Bliznyuk, Rika Kobayashi, Ben Menadue, Ben Evans
Submitter: Tracy Chew