ECTI Atopic Dermatitis
master @ fafd5bf

Workflow Type: Python
Stable

Stratum corneum nanotexture feature detection using deep learning and spatial analysis: a non-invasive tool for skin barrier assessment

Data Processing

This repository presents an objective, quantifiable method for assessing atopic dermatitis (AD) severity. The program integrates deep learning object detection with spatial analysis algorithms to accurately calculate the density of circular nano-size objects (CNOs), termed the Effective Corneocyte Topographical Index (ECTI). The ECTI demonstrates remarkable robustness in overcoming the inherent challenges of nano-imaging, such as environmental noise and structural occlusions on the corneocyte surface, further enhancing its applicability in clinical settings.

Dependencies

  • Python 3.9+
  • matplotlib
  • numpy
  • opencv-python
  • scipy
  • scikit-image
  • ultralytics
  • scikit-learn
  • customtkinter

Directories

  • AD_Assessment_GUI.zip contains a cross-platform executable GUI, sample data, and a tutorial video.
  • utils/Img_Preprocessing.py demonstrates the image enhancement algorithms applied to the corneocyte nanotexture images.

Usage

  1. Execution via cross-platform executable GUI

    • Download AD_Assessment_GUI.zip
    • Run AD_Assessment_GUI.exe
    • Analysis results will be saved within the selected path in a folder titled CNO_Detection
  2. Execution via python script

    • Install packages in terminal:
      pip install -r requirements.txt
      
    • Run AD_Assessment_GUI.py
    • Analysis results will be saved within the selected path in a folder titled CNO_Detection

Executable

  1. Install PyInstaller in terminal:

    pip install pyinstaller
    
  2. Run command in terminal:

    pyinstaller --onedir .\AD_Assessment_GUI.py
    

Performance

Model Test Size #Parameter (M) FLOPs (G) AP50 (%) AP50-95 (%) Latency (ms)
YOLOv10-N 512 2.7 8.2 89.6 51.4 3.3
YOLOv10-S 512 8.0 24.4 90.8 55.5 4.58
YOLOv10-M 512 16.5 63.4 91.3 59.7 7.17
YOLOv10-B 512 20.4 97.7 91.1 62.5 7.58
YOLOv10-L 512 25.7 126.3 91.4 63.2 9.01
YOLOv10-X 512 31.6 169.8 91.2 62.9 10.95
RT-DETRv2-S 512 20.0 60.0 87.6 39.6 5.51
RT-DETRv2-M 512 31.0 100.0 84.0 37.2 7.48
RT-DETRv2-L 512 42.0 136.0 84.3 33.4 13.50
RT-DETRv2-X 512 76.0 259.0 83.3 32.0 21.15

Dataset

The corneocyte nanotexture dataset is available for download at the following link: Corneocyte Nanotexture Dataset.

Contributions

[1] Liao, H-S., Wang, J-H., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E-T. (2022). Atopic Dermatitis Severity Assessment using High-Speed Dermal Atomic Force Microscope. Abstract from AFM BioMed Conference 2022, Nagoya-Okazaki, Japan.

[2] Pereda, J., Liao, H-S., Werner, C., Wang, J-H., Huang, K-Y., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E. T. (2022). Hacking Consumer Electronics for Biomedical Imaging. Abstract from 5th Global Conference on Biomedical Engineering & Annual Meeting of TSBME, Taipei, Taiwan, Province of China.

[3] Liao, H. S., Akhtar, I., Werner, C., Slipets, R., Pereda, J., Wang, J. H., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E. T. (2022). Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures. HardwareX, 12, [e00341]. https://doi.org/10.1016/j.ohx.2022.e00341


Contact: Jen-Hung Wang / Assoc. Professor En-Te Hwu

Version History

master @ fafd5bf (earliest) Created 11th Sep 2024 at 12:09 by Jen-Hung Wang

Update readme.md


Frozen master fafd5bf
help Creators and Submitter
Creator
Submitter
Citation
Wang, J.-H. (2024). ECTI Atopic Dermatitis. WorkflowHub. https://doi.org/10.48546/WORKFLOWHUB.WORKFLOW.1161.1
Activity

Views: 589   Downloads: 86

Created: 11th Sep 2024 at 12:09

help Attributions

None

Total size: 2.76 MB
Powered by
(v.1.16.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH